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For all the subgroup hierarchies descending from the octahedral double group 
O*, we have obtained sets of 3-F symbols and discuss here their properties. 
We have entirely real sets of 3-F symbols for the tetrahedral and tetragonal 
hierarchies as well as for O* ~ C3". For the latter hierarchy and the tetragonal 
ones, formalisms almost as powerful as the classical one for the rotation group 
may be established. We also discuss results obtained for cases with strict 
adaption to D* where it is now known that non-real 3-F symbols are unavoid- 
able. 

The 3-F symbols are phase-fixed by the specification of basis functions (or, 
equivalently, subduction coefficients) generating them. 

The significance of the concept of associated representations of O* is dis- 
cussed. The problems raised by the two multiplicity triples UTIU and UT2U 
in O* are given particular attention. 

Key words: octahedral double group-subgroup hierarchies--real phase-fixed 
three-gamma symbols and coupling coefficients--standard irreducible matrix 
representations--complex conjugation of matrix representations by inner 
automorphism--non-real  trigonally adapted octahedral three-gamma symbols. 

1. Introduction 

The importance of the octahedral group O and its double group O* for coordina- 
tion chemistry is well-known, and these symmetries are also often taken as the 

* Present address: Department of Pharmaceutical chemistry AD, Royal Danish School of Pharmacy, 
Universitetsparken 2, DK-2100 Copenhagen 0, Denmark. 



420 T. Damhus et al. 

basis for considerations or calculations in neighboring disciplines such as 
molecular spectroscopy or solid-state physics. Thus it is clearly of  interest to have 
at one's disposal smoothly working Wigner-Racah algebras for the various group 
hierarchies of the form O* ~ G~ D G2 �9 �9 �9 �9 The purpose of the present paper is 
to provide a basis for this by discussing the building-blocks for Wigner-Racah 
algebra called 3-F symbols [1]. The exposition will be based on the general 
developments made in [1] and the particular remarks concerning double groups 
made in [2]. We refer to these papers for terminology and notation not explained 
here. 

There exists, of  course, a rather vast literature on octahedral symmetry. We do 
not purport  to reference this literature in any complete way here. However, we 
shall comment on most of  the literature from the last decade or so regarding 
octahedral 3-F symbols. This literature includes two earlier publications from 
this laboratory [3, 4]. We refer to these papers for discussions of  most of the 
relevant literature prior to 1972. 

The present work makes use of basis functions [2] generating the standard matrix 
forms of  the irreps (irreducible representations) of O*. There is a long record of 
literature dealing with the determination of such basis functions, especially linear 
combinations of spherical harmonics or other basis functions for irreps of ' the 
full rotation double group R*. For our present purpose it is not of  particular 
relevance to make detailed comparisons with these older works. For a collection 
of references and still another contribution to that particular subject we refer to 
a forthcoming publication on cubic harmonics [5]; another useful source of 
references of this kind is [6]. 

Most previous papers devoted to octahedral 3-F symbols take some or other set 
of coupling coefficients ([1], Sect. 3.3) as the starting point from which they 
proceed to a 3-F symbol-like construction. This approach in many cases has led 
to an erroneous or, at the best, very involved treatment of the two multiplicity 
triples UT~U and UT2U in O*. The approach adopted here [1, 2] does not lead 
to these difficulties, as will be demonstrated below. 

2. General remarks on the representation algebra of O* 

A listing of those O*-irrep triples F1F2F3 for which dim ~(r11~2F3) > 0 ([1], Sect. 
3.1), that is, for which 3-F symbols exist, may be obtained for example from 
Table 5 of [4]. We shall use the same symbols for the irreps as in [4]; in particular, 
the totally symmetric irrep will be denoted AI rather than lo. .  Its component 
will be denoted 0. The component designations for the other irreps depend on 
the subgroup adaption. 

The group O* is ambivalent, that is, all its irreps are of the first or second kind 
according to the Frobenius-Schur classification [( 1], Sect. 5.2; [7]) and thus matrix 
forms of  the irreps always possess conjugating matrices. By our conventions (Ill, 
Sects. 5.1-5.3), the conjugating matrix U r corresponding to the matrix form ~ of 
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an irrep F generated by our standard basis functions for F is given by the formula 

a,, , , ,  (21  
',3' 0 3' ] 

We recall that the conjugating matrix satisfies the relation UrF(R)(Ur) -I = P(R) 
for all R c O*, the overbar denoting complex conjugation. In [4], the 3-F symbols 
(FFA~/3'3''0) were used instead of (FA~F/~0~'); if basis functions are identical, 
the difference in the resulting algebras amounts to a sign change on U r when F 
is of the second kind (i.e. when F = El, E2, or U). However, as will be clear from 
the sequel, the present formalism is different from that of [4] in several other, 
more significant respects. 

The presence of the non-trivial one-dimensional irrep A2 in the irrep algebra of 
O* gives rise to the concept of associated octahedral representations. Two 
(equivalence classes of) representations F~ and F2 of O* are said to be associated 
if F~ = F2@A 2 (or, equivalently, F2= Fl| The irreps A1 and A2; T~ and T2; 
and E1 and E2 form pairs of associated representations. The irreps E and U are 
both self-associated. The term "associated" has been used in contexts similar to 
the present one in early literature on group representations [8, 9], but the usual 
starting reference in connection with Wigner-Racah algebra is Griffith ([ 10], App. 
B), who discussed the phenomenon for the octahedral group O. Several later 
publications deal with the subject, partly in more general settings [11-14]. From 
our present point of view, association is only of interest if the associated irreps 
actually have associated matrix forms. This is of course not possible for the 
self-associate irreps, E and U, and it is trivial for Al and A2; but for T1, T2 and 
El, E2 it is a possibJe and non-trivial restriction on matrix forms of the irreps 
that they satisfy -~1=~-2| and fl:l=~Z2| (Identities like these imply a 
correspondence between components of ~-1 and T2 and a correspondence between 
those of n:~ and ~:2- In [4], it was incorrectly stated that establishing such a 
correspondence contradicts Schur's lemma; there is, in fact, no contradiction 
because the construction involves no statement equivalent to claiming that, e.g. 
7~ and ]1- 2 are equivalent. This error was also noted in [12].) In the case of such 
associated matrix forms, we may use ([1], Eq. (3.1.5)) to establish certain relations 
involving 3-F symbols in which two irreps are replaced by their associates. E.g., 
if F is any irrep of O* with standard matrix form F, one gets 

w2 r) 
3`1 ")/2 3`31 ~k 3`~ 3`; 3`~ 

1 
= - -  Y~ [~, |174 

48 r~o* 

1 
= - -  Z -~(R)~,~f f  l ( R ) ~ f ( R ) . ~ ;  

48 R~O* 

:(T1 wl F)(T Wl r) 
3`1 Y2 3`3 7] 3`2 Y3 

(2.2) 
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for all components '~l, 72, ")/3, "~,  '~2, Y3 (denoting corresponding components of 
TI and T2 by the same component symbol); it is then an easy exercise to infer 
from (2.2) that the 3-F symbols (T2T2F/T17273) can differ from ( T ~ T f / y l y 2 y 3 )  
by at most a common complex phase (a sign factor if the 3-F symbols are real). 
When this proportionality phase is known, a reduction in tabulation space for 
the 3-F symbols can be achieved. However, in view of the points made in Sect. 
4.1 below, this aspect is not that important, especially considering that the price 
to be paid is that we have to keep track of the phases in our formalism. 
Furthermore, matrix irrep association for O* is incompatible with adaption to 
D3* or D4*. The problem is there already for O D D 3 and O D D4. In the trigonal 
case, this may be appreciated by noting the subduction relations 

Tl (O) -~ AE(D3) • E~ (D3) 

T2(O) ~ AI(D3) 03 El(D3) (2.3) 

A2(O) -+ A2(D3). 

The irreps of D3 are denoted as in [15]. Since no matrix form ~:l of El(D3) can 
satisfy n:l = IZl | matrix forms -gl and -g2 of Tl(O) and T2(O), respectively, 
satisfying -gl =-g2| cannot be (O D D3)-adapted. It seems as if Griffitb 
overlooked this problem in his discussion of trigonal symmetry adaption ([10], 
p. 19). The argument for D,  is completely analogous. 

On this background, we shall not devote any more space to the association 
phenomenon except for noting later on, in the discussion of the 3-F symbols we 
have generated (Sect. 4), whether or not the involved matrix irreps are associated. 

3. The multiplicity triples UT,U and UT2U 

The irrep triples UT1U and UT2U in the octahedral double group - and only 
these, disregarding permutations of the irreps within a triple - have multiplicity; 
indeed, dim ~(UTlU) = 2 = dim ~(UT2U). The procedure outlined in [2] leads 
to the assignment of the j-value triples ~1~3 3 and ~3~3 3 to UT1U and ~2~3 3 and ~3~3 3 to 
UTEU. We recall that this implies, for example, that the two sets of 3-F symbols 
which we require for UT2U are constructed by renormalization with positive 
proportionality factors N of O*-adapted 3-j symbols according to the fol lowing 
prescriptions: 

(u T2 u) (3 ) 
")/1 72 73 o o U,,)/I T23'2 Uy3 

(2.4a) 

and 

(0  24b, 
'~1 ")12 ')13 e = Ne Uyl  T2Y2 Uy3 

For the multiplicity index we have here used the subscripts "o"  (for odd) and 
" e "  (for even),  since the 3-F symbols defined by (2.4a) are odd (3 +2 +3 is odd; 
cf. ([2], Eq. (4.3.7)), while those defined by (2.4b) are even. 
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In both multiplicity cases, the two fix-vectors obtained by the above procedure 
form an orthonormal set by the arguments given in [2, Sect. 4.6]. 

The apparently exceptional character of the triple UT2U signalized by the asterisk 
in Table 5 of [4] disappears within the present description. 

Having obtained 3-F symbols for O*, we may also construct coupling (Clebsch- 
Gordan coefficients) by the formulas discussed in ([1], Sect. 5.3.3) or, if relevant, 
by ([1], Eq. (5.5.10)). In [4] the approach was different: First, a certain class of 
coupling coefficients for O* was established by renormalization of coupling 
coefficients for R* with positive proportionality factors. Then these particular 
coupling coefficients were used to generate a full set of 3-F symbols for O*, after 
which the remaining coupling coefficients for O* could be calculated. This way 
of proceeding resulted, as far as we know, in a consistent formalism, but the 
approach is less transparent than the one we are now describing. Since [4] may 
further be confusing because a set of-~(R*)U(O*) basis functions was included 
which is not necessary for the construction of the 3-F symbols or coupling 
coefficients, we would like to add the following remarks of warning. 

When generating coupling coefficients for O* (rather than 3-F symbols) by the 
use of basis functions, it is not unnatural to suggest to use, for coupling coefficients 
of the types (T2~/1U]/2[/~U~/3) and (U]/1T272]/~U3/3), two  sets of basis functions 
for U. If one sticks to the lowest possible j-values, this leads to the involvement 
of ~(R*)U(O*)-functions. However, the UT2U fix-vector generated by the trans- 
formed 3-j symbols (32~/ U yl T2 72U T3) is neither symmetric nor antisymmetric (i.e. 
it is a mixture of both symmetry types), so from this fix-vector it is impossible to 
construct 3-F symbols. For UT~U, the consequences of using a ~-set of basis 
functions for one of the U's are less dramatic; in fact, it can easily be shown 
from the arguments in ([2], Sect. 4.6) that the transformed 3-j symbols of the two 

3 5 types (gl~/U'y1Tl'Y2U]/3) and 3 3 (~3g/UT1TI T2U'y3) form proportional fix-vectors for 
UT1U. 

[The above constructions may be said to effect a separation of the multiplicities 
for the triples UT~U and UT2U. The choice of a multiplicity separation has 
consequences beyond the one~ discussed above. For example, sets of recoupling 
coefficients and 6-F symbols calculated on the basis of the 3-F symbols will look 
different depending on the choice of a multiplicity separation. (Work is in progress 
[16] on 6-F symbols for groups with a Wigner-Racah algebra satisfying the 
conditions discussed in ([1], Sect. 5.5). The concept of 6-F symbols generalizes 
that of 6-j symbols [17, 18] or W coefficients [19] for the rotation group. In [4], 
6-F symbols were discussed for the octahedral double group and given for the 
octahedral group. The 6-F symbols discussed in [4] were based on the same 
multiplicity separation as we have here.) One application of the 6-F symbols in 
ligand-field theory is for setting up matrices of the spin-orbit coupling operator 
[4, 20]. We have checked that for the U part of the quartet spin-orbit coupling 
matrix within the d 3 electronic configuration, our 6-F symbols lead to a set of 
matrix elements which is equivalent to the one given by Griffith ([21], Table A34). 
For the 4T 1 terms we get the same diagonal matrix as [21]; for the 4T2 terms one 
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cannot, like Griffith, obtain a diagonal matrix if one wants to separate the UT2U 
multiplicity according to symmetry/antisymmetry. (Piepho [22] has also pointed 
out that the coupling coefficients on which Griffith's matrix is based mix the 
symmetric and antisymmetric part.) Butler ([14], pp. 76-77) uses a multiplicity 
separation for UTIU based on a certain relation involving the associated irreps 
concept (see Sect. 2 above) and different from ours; it results in a table of  6-j 
symbols (in his terminology) for the octahedral double group completely free of  
factors Vr5, but, on the other hand, leading to a non-diagonal spin-orbit coupling 
matrix for the 4T1 terms. Still another multiplicity separation is discussed in [23]; 
although it has interesting properties, it is not useful for our present purpose.] 

4. Basis functions and 3-F symbols for all the octahedral double group-subgroup 
hierarchies 

4. I. Introductory remarks 

In this section we shall list all the subgroup hierarchies of the form O * ~ . . -  
and discuss properties of the standard matrix irreps and the standard basis 
functions we have chosen and of the resulting octahedral 3-F symbols. However, 
the rather vast tabular material itself is not suitable for reproduction in a paper 
like the present one. Besides that, in the authors' opinion, when generating 3-F 
symbols by the procedure of [2], the results are not to be communicated as 
extensive tables. Such tables would inevitably contain errors if they were set 
manually for printing, and using them without adding further errors would also 
be difficult. A reasonable approach is to get a set of basis functions with the 
desired properties and then to generate the 3-F symbols (or coupling coefficients) 
with a computer when they are needed. (The basis function sets referred to below 
are, consequently, obtainable from the authors until possibly some way of publish- 
ing them separately has been decided upon.) Efforts in our laboratory are presently 
directed at a computer implementation of the whole formalism described in [I, 2] 
together with the basis functions given here and in [15] for the dihedral double 
groups, in [24] for the tetrahedral double group, and in [25] for the icosahedral 
double group. In view of  the above remarks, the most important reason for writing 
the present paper lies in the discussion of  the fundamental aspects, to which we 
shall turn now. 

We shall have occasion to refer several times to the particularly convenient 
formalism described in ([1], Sect. 5.5). We recall that the basis for that formalism 
was the existence of an inner automorphism of the group carrying all standard 
matrix irreps into their complex conjugate (see [7, 26] for more of the background). 
In practical terms, this means that there is a fixed group element Ro so that the 
relation 

(r A, r,)=(dimr)_,/~r(Ro)~," (4.1.1) 
y 0 y 

is satisfied for all standard matrix irreps F. The 3-F symbols represented to the 
left in (4.1.1) are related to our conjugating matrices as described in Sect. 2. In 
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all the cases below where we have the situation (4.1.1), the coordinate system 
y* 

has been chosen in such a way that the element Ro is C2 , the double-group 
element ~E1/21 (0, ~r, 0) corresponding to the two-fold rotation around the Y axis 
(cf. [2], Sect. 2). The main advantages of the inner automorphism situation are 
that all 3-F symbols may be chosen real; all Derome-Sharp/~ matrices ([1], Sect. 
5.4) are unit matrices, i.e. the formula 

'~1 '~2 73 /3 '~1 Y2 ")/3 /3 

holds generally; and that B matrices ([1], Sect. 5.4) are generally given by 
Bi(FIF2F3)~/3 = ~-(FiAlFi)3(a,/3), so that, for example, 

3/1 72 73 /3 T2 73 /3" (4.1.3) 

Furthermore, the relation between coupling coefficients and 3-F symbols discussed 
in ([1], Sect. 5.3) and fixed there (by convention) assumes the simple form 

(F1 ylr2y2[/3F3 y3)= ~r(F1FzF3 ~ ) ~ ( F 2 A I F 2 ) ~ ( F 1  ra r3) 
"~t ~/2 ')/3 /3" (4.1.4) 

In (4.1.3) and in (4.1.4), the ~r phases are the permutational characteristics 
(transposition phases), that is, ~r(F~F2F3/3)=+I if the 3-F symbols 
(F1FeF3/'/1TzT3)/3 are even and = - 1  if they are odd ([1], Sect. 4). 

[When all of this favorable formalism applies, the only ingredient which is still 
needed to establish a machinery completely as elegant as the one for the classical 
case of the rotation group ([1], Sect. 6 and references therein) - or the hierarchy 
I* ~ C* discussed in [25] - is a simple explicit and general formula for the matrix 
elements F(Ro)~v, in (4.1.1). This would permit us to simplify the formulas for 
conjugation of irreps in 3-F symbols (compare [1], Eq. (6.3) and [25], Eq. (3.2.6)) 
and establish some internal relations between 3-F symbols for a given triple 
(compare [1], Eq. (6.6)) and ([25], Eq. (3.2.5)). However, in the octahedral cases 
considered below, the partial or complete adaption to one or several intermediate 
dihedral double groups in most cases prevents us from establishing in a simple 
way this last bit of formalism. Luckily, the advantages los t -  the ones just indicated 
above - are not particularly important for computer applications of the 3-F 
symbols, and manipulating them with paper and pencil, one will often see that 
obvious relations are actually satisfied even though they would have been compli- 
cated to express in a generally valid form.] 

In all the cases discussed below, the standard matrix irreps of O* are at least 
adapted to some cyclic double group C* c O* with n = 2, 3, or 4. This adaption 
forces ([2], Sect. 3.5) corresponding 3-F symbols to satisfy a "selection rule" of 
the form 

(F~ F2 r3 ) r  0 (moan), (4.1.5) 
")/1 'Y2 ~/3 /3 
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provided the components 3'; are chosen as numbers that reflect the C*-adaption 
(7i corresponding to eigenvalue exp (-iyi27r/n) under the distinguished C* 
element of  0" ) .  

4.2. Tetragonal hierarchies 

The starting point here was the (O*D Ca*)-adapted basis functions given in [4]. 
Within our new material, they are available with new component designations 
conforming to the convention stated at the end of Sect. 4.1. They generate matrix 
irreps of  O* satisfying T l = T 2 ( ~  A2 and IF 1 = E 2 ~)A2 and, by our present procedure, 
3-F symbols obeying the formalism of  ([1], Sect. 5.5) - discussed above in Sect. 
4.1 - and satisfying (4.1.5) with n =4.  

By rather trivial alterations of  these basis functions, it was possible to produce 
a series of related basis function sets with the common property of being adapted 
to a D4* subgroup of O*. As noted above, adaption to D* excludes the possibility 
of having the matrix forms of T~ and Tz to be associated. All the tetragonal basis 
functions to be described now are real linear combinations of the [jm) functions 
and generate real 3-F symbols which satisfy the ([1], Sect. 5.5)-formalism. 

The groups D*, and in particular D*, were discussed in [15]. Standard matrix 
irreps adapted to two general dihedral subgroup hierarchies were considered: 
D* D C* and D* = C*, the C* in the latter case corresponding to a two-fold 
rotation about an axis perpendicular to the main C, axis. Imbedding D4* into 
O*, we get the hierarchies O* D D4* D Ca* and O* ~ D4* D C*. 

For O* = Da* = Ca* we have two sets of  basis functions corresponding to the two 
choices of  a coordinate system shown in Figs. la and lb, that is, differing in 
whether the element C y* corresponds to a two-fold rotation about a four-fold 
symmetry axis of  the regular octahedron (Fig. la) or one about a two-fold 
symmetry axis (Fig. lb). For short, we shall denote these two possibilities " Y  

Z Z 

cy / cX'O 

Fig. la (left). First choice of  a coordinate system ( Y axis of the vertex type, see main text Sect. 4.2) 
for applications in an octahedral-tetragonal symmetry hierarchy. The counterclockwise rotation 
cX=r=z of  2~r/3 about the indicated three-fold symmetry axis of  the regular octahedron has Euler 
angles (0, zr/2, ~'/2). b (right). Second choice of  a coordinate system (Y axis of  the edge type) for 
applications in an octahedral-tetragonal symmetry hierarchy. The counterclockwise rotation C x=~ 
of 2~-/3 about the indicated three-fold axis in the YZ plane has Euler angles (~'/4, r ~'/4) 
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vertex" and " Y  edge" (for obvious reasons). One set of basis functions may be 
generated from the other by the procedure described in ([12], Sect. 4.5) and they 
thus generate the same total set of 3-F symbols. Nevertheless it is practical to 
actually store both sets. For one thing, the transformation from one set to the 
other interchanges certain irreps and components so that keeping track of which 
3-F symbols to use for which irreps and components may be tedious (this mixing 
of irreps under a coordinate system rotation resembles the one discussed for the 
icosahedral hierarchy I = D2 in [27]). Another reason is that all our basis functions 
have had their signs fixed by the rules given in ([2], Sect. 4.4) ; thus the "rotation 
relation" between two such function sets may have been destroyed when fixing 
their individual signs. 

For O* D D4* D C*, the two-fold axis corresponding to the C* subgroup of D4* 
may be of the vertex or the edge type, and we thus again have two sets of basis 
functions which we this time denote "C~- vertex" and " • C2 edge". Of course, 

y*  
Ro = C2 , too, will then correspond to a vertex-type axis and an edge-type axis, 
respectively. Figs. la and lb and the rest of the above discussion apply again. 

There is yet a possibility, however, for hierarchies involving O * =  D*, namely 
the further adaption to a D2* subgroup of D4* and to a C2" subgroup of the D* 
subgroup chosen. The D* subgroup may be imbedded in two ways corresponding 
to whether the two two-fold axes it singles out among the 4 perpendicular ones 
of D* are of the vertex or the edge type; the coordinate system is then again 

y*  
chosen as in Fig. la or in Fig. lb, respectively, so that C2 e D* in both cases. 
Afterwards, the C* subgroup of D* may be chosen to be generated by the element 
(c4Z*) 2 or by an element corresponding to a two-fold rotation about either the X 

X* axis or the Y axis; our choice in [15] was C2 �9 In all, we get 4 sets of basis 
functions for O* D D* D D2* D C*. 

In all cases corresponding to Fig. la, the group O* is generated within R* by 
the element cZ*=@E1/21(Tr/2,0, O) and the element (c3X=Y=Z)*=~ tl/21 
(O, ~-/2, ~-/2) and in all cases corresponding to Fig. lb, by C z* and (cX=~ * = 
~tl/23(~/4, 7r/2, ~-/4). (Cf. discussion of double groups in ([2], Sect. 2).) 

The following list summarizes our sets of tetragonally adapted octahedral basis 
functions: 

O* = C*  ([4]; note that these functions are not phase-fixed according to the 
rules in [2]); 

O* = D* = C* 

O* D D4* D C* 

O* D D4* ~ D* 

O* D D4* D D* 

O* ~ D4* ~ D2* 

O* ~ D4* D D* 

( Y vertex), O* D D* D C* ( Y edge) ; 

(C~- vertex), O* = D4* ~ C* (C~- edge); 

D C~ (D  2 vertex, C x* c C*), 

C* (D2 vertex, C z* ~ C*), 
X* C* (D2 edge, C2 ~ C*), 

D C* (D2 edge, cZ*6 C'2). 

(4.2.1) 
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Z Z z 

YX, c L 

Fig. 2a (left). Coordinate system chosen for the hierarchy O* D T* D C* (main text, Sect. 4.3). The Z axis 
is a three-fold symmetry axis for the regular octahedron shown and for the regular tetrahedron 
inscribed in it as well; the Y axis is a two-fold axis for the octahedron, but not a symmetry axis for 
the tetrahedron; and the X axis is not a symmetry axis for the octahedron. The counterclockwise 
rotation C a of r about the indicated four-fold axis has Euler angles (5~-/3, Arccos (1/3), 2~r/3); 
its axis is a four-fold symmetry axis for the octahedron and a two-fold axis for the tetrahedron. 
la (right). Coordinate system chosen for the hierarchy O* = T* = C*. With respect to the octahedron, 
the coordinate system is placed as was the one shown in Fig. lb. The Z axis is a two-fold symmetry 
axis of the inscribed tetrahedron; the axes of the rotations C3 x=~ (see legend to Fig. lb) and C Y=~ 
are three-fold symmetry axes for the tetrahedron 

4.3. Tetrahedral hierarchies 

This class consists  o f  two sets o f  basis  funct ions ,  one  a d a p t e d  to O* D T* ~ Ca* 
and  one  a d a p t e d  to O* D T* ~ C*. Figs. 2a and  2b show the choices  o f  coo rd ina t e  
systems we have made .  F o r  O* ~ T* ~ Ca*, the  oc t ahedra l  g roup  has been  chosen  
as the  s u b g r o u p  o f  R* gene ra t ed  by  the e lements  C z * =  ~[1/2](27r/3, 0, 0) and  
C4" - ~[Z/Zl(5"n'/3, Arccos  (1 /3) ,  2 I r / 3 ) ;  for  O* D T* D C*,  the  e lements  C4 z* and  
( c X = ~  * (see Sect. 4.2) genera te  O*. In  each  case, the t e t r ahedra l  subg roup  is 
g e n e r a t e d . b y  the C* e l emen t  and  the sqfiare o f  the C]' e lement .  The  e lement  
-Ca* chosen  as one o f  the  genera tors  for  T* in the d iscuss ion  o f  T* = C* in [24] 
c o r r e s p o n d s  to the  th ree- fo ld  ro ta t ion  C ( = ~  also shown in Fig. 2b. 

Fo r  bo th  sets, (4.1.1) is sat isf ied with Ro = C Y*. The basis  func t ions  are all  real  
l inear  c o m b i n a t i o n s  o f  the  Ijm) funct ions  and  accord ing ly  genera te  real  3-F 
symbols .  F o r  each o f  the  h ie rarch ies  T* ~ Ca* and  T* D C*,  the  set o f  basis  
func t ions  in [24] is a subset  o f  the p resen t  set for  O* D T*, and  thus  the p resen t  
mat r ix  i r reps  o f  O* subduce  to the  ones  chosen  as s t anda rds  for  T* in [24]. 

The mat r ix  i r reps  o f  O* in bo th  cases sat isfy 71 = ql-2| and  E l = E2| 

The ( O * ~  T * ) - a d p a t i o n  m a y  not  be  as impor t an t  for app l i ca t ions  in, say, 
m o l e c u l a r  spec t ro scopy  or  l igand-f ie ld  theo ry  as are the t e t ragona l  h ierarchies  
cons ide r ed  in Sect. 4.2 and  the t r igonal  ones  to be d iscussed  in Sect. 4.4. The 
t e t r ahedra l  ones do  have  a f u n d a m e n t a l  interest  in connec t ion  with [24], though.  
In the  p resen t  cases,  the  inner  a u t o m o r p h i s m  R ~ C Y * R ( C ~ * )  -L of  O*, as 
e x p l a i n e d  above ,  carr ies  all  s t anda rd  mat r ix  i r reps  into the i r  c omp le x  conjugate .  
The s u b g r o u p  T* is easi ly  seen to be invar ian t  u n d e r  this a u t o m o r p h i s m ;  on the 
o the r  h a n d  its res t r ic t ion  to T* canno t  be an inner  a u t o m o r p h i s m  o f  T*, because  
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T* has irreps o f  the third kind (cf. [7, 26]). Thus we have spotted an outer 
au tomorph i sm of  T* carrying its s tandard matrix irreps o f  [24] into their complex 
conjugates.  It has recently been proved (combine arguments  given in [26] with 
the result in [28]) that  the existence o f  a full set o f  real 3-F symbols is always 
associated with a (unique) au tomorphism which effects complex conjugat ion o f  
the matrix irreps.] 

4.4. Trigonal hierarchies 

After the present authors had put a great deal o f  effort into attempts at preparing 
real 3-F symbols for O* ~ D*,  it was recently proved [28] that this is impossible. 
However ,  considering the great impor tance  of  the tr igonal hierarchies in coordi-  
nat ion chemistry,  we have prepared three different sets o f  tr igonally adapted  
O*-basis  functions,  each with its merits and drawbacks.  These will now be 
described. 

4.4.1. Basis functions strictly adapted  to O* D D*  D C* 

The coordina te  system chosen is shown in Fig. 3a. The group O* is generated 
by the R*-e lements  C3 z* (see Sect. 4.3) and C4" = ~E1/2j(~'/6, Arccos (1/3),  ~r/6); 
the D*  subgroup by C3 z* and C2 x* = ~[1/21(7r, ~', 0); and the latter element finally 
generates the C* subgroup.  Thus the set-up for D*  is our  s tandard  one for D*  
as described in [15], and the present basis functions generate the irreps o f  D*  
in the s tandard  matrix form (ii) for D*  ~ C* given there. The basis functions are 
not all real l inear combinat ions  of  the Ijm) functions.  However ,  for all the vector 
irreps o f  O*(AI,  A2, E, T~, T2, cf. [2], Sect. 2), the matrix representatives of  the 
above-ment ioned  generators  of  O* are symmetric matrices, and, indeed, all 3-F 
symbols for triples o f  three vector irreps are real (cf. [2], Sect. 3.2). 

- \ I cz 

~ Y 

• 

Z 

X 

Fig. 3a (left). Coordinate system chosen for the two considered hierarchies O*D * = * 93 C 2 and 
O* ~ D3* = C* with strict adaption of the octahedral irreps to D3* (main text Sect. 4.4). The two-fold 
rotation about the X axis is an element of the octahedral as well as the trigonal dihedral group. The 
Y axis is not a symmetry axis for the octahedron. The counterclockwise rotation ~'4 of ~-/2 al~out 
the indicated four-fold axis has Euler angles (~/6, Arccos (1/3), ~'/6). b (right). Coordinate system 
chosen for the set of basis functions adapted to O* D C*, but not strictly to D3* (main text Sect. 
4.4.3). The two-fold rotation about the Y axis is an element of the octahedral as well as the trigonal 
dihedral group. The X axis is not a symmetry axis for the octahedron. The four-fold rotation indicated 
is (74 described also in the legend to Fig. 2a 
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4.4.2. Basis functions strictly adapted to O* ~ D* ~ C* 

Except for the fact that the hierarchy terminates with the group C* generated 
by C3 z* rather than with C*, the whole description given in Sect. 4.4.1 is valid 
also for the present set of basis functions. 

4.4.3. Basis functions adapted to O*(DD*) D C'3 

In the cases we discussed in Sects. 4.4.1 and 4.4.2, the price we had to pay for 
strict adaption to D3* was the presence of non-real 3-F symbols. Here, we have 
a set of basis functions leading to a very convenient algebra with real 3-F symbols, 
but not strictly adapted to D3*. 

The coordinate system adopted is shown in Fig. 3b. The group O* is generated 
by C3 z* and the R3*-element C* defined in Sect. 4.3. The elements C3 z* and Cf* 
generate the subgroup D* and C z* the subgroup C*. 

The matrix irreps of O* this time all have symmetric generator representatives, 
so that real 3-F symbols should exist, and in fact all the functions are real linear 
combinations of the Ijm) functions and thus generate real 3-F symbols. Further, 
(4.1.1) is satisfied with R0 = C Y*. 

The deviation from strict adaption to D* lies mainly in the fact that the irreps 
RI(D*) and Rz(D3*) (see [15]) are not separated. In addition, we have here 
C Y* ~ D3 with the representative matrices 

IZx ( C a )  = (4.4.3.1) 

in the D3*-irreps EA, A = 1/2 and 1, which was not the standard chosen in [15]; 
this latter difference is, of  course, not as serious as the first one. 

4.4.4. Concluding remarks on trigonal hierarchies 

The choices of  coordinate system made in the three cases discussed above were 
dictated by the desire to keep the set-up for D3* introduced in [15] when adapting 
the O*-irreps strictly to D*, but, on the other hand, to have R0 = C2 r* in (4.1.1) 
in the third case, where the inner automorphism approach is r~alizable and there 
is no strict adaption to D* anyway. Furthermore, in the third case, the basis 
functions assumed more simple expressions in terms of the Ijm) functions in the 
coordinate system chosen. 

If  it is desired to shift to some coordinate system rotated about the Z axis relative 
to the one used here, the procedure discussed in ([2], Sect. 4.6) may be applied. 

4.5. A note on the figures 

The octahedra and tetrahedra in Figs. 1-3 are only drawn to facilitate the 
visualization of the axes of the selected point group generators. Their full sym- 
metry is of  course Oh and Td, respectively, whereas above we have only been 
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concerned with the double  groups O* and T* of  the proper  rotat ion groups O 
and T. Double  groups of  Oh and Ta have been defined ([2], Sect. 2; [29]). 

5. Further remarks on the literature 

We shall only comment  here on literature dealing with the octahedral  double 
group (as opposed  to just the octahedral  group itself); see also the reservations 
made in Sect. 1 above. The paper  [4] has been dealt with in previous sections. 

A series of  papers by B. and T. Lulek [11, 12, 30, 31] describe a basis funct ion 
approach  to the construct ion o f  " 3 j F y - s y m b o l s "  for O*. Their whole exposit ion 
is, however,  very different f rom ours, and for the permutat ional  properties,  in 
part icular  those related to the triples UT1U, we think it is much  too involved, 
partly because of  the way coupling coefficients are drawn into the discussion. A 
recent paper  by Btaszak [32] discusses Wigne r -Racah  algebra for O * c  SU(2). 
The exposi t ion lies very close to partly that of  the Lulek papers,  partly that o f  [4]. 

Kibler et al. [6] have prepared some tables for R* ~ O * D  D*  = D*,  but  the 
discussion of  how to use them is incomplete.  The UT1U and UTzU problems are 
not  ment ioned  at all. 

Butler has given tables o f  "3-jrn factors" relating to various octahedral  subgroup 
hierarchies [14]. The whole  approach  of  [14] is very different f rom the present 
one, as a lready noted in [2]. One consequence of  this is that  in [14], the features 
"coOrdinate system chosen"  and "genera tor  irrep matrices",  rather than being 
at the basis o f  the material,  are properties which can only be determined by an 
elaborate series of  arguments.  
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